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Abstract

Finite Automata is commonly used to efficiently match a Regular Expression (RE) to a given text
input. There are RE engines for submatch extraction based on Non-deterministic Finite Automata
(NFA). These algorithms usually return a single match for each submatch, instead of the history of
submatches (full parse tree). An NFA can be converted to a Deterministic Finite Automata (DFA) to
improve the runtime matching performance. This document describes an algorithm based on DFA
that extracts full parse trees from text.

Introduction

Regular Expressions (RE) are used to describe patterns to match over a given text. Most regex
engines  (such as  Perl’s  PCRE) allow to  specify  capture  groups  for  submatch  extraction,  word
boundaries (i.e.:  `\b`), and character properties (i.e.:  `\w`). There are well known algorithms that
take a RE and construct a Non-deterministic Finite Automata (NFA). An NFA can be converted to a
Deterministic Finite Automata (DFA) to improve performance. The algorithm I describe constructs
a ε-NFA, converts  the ε-NFA to NFA, and then converts the NFA to DFA. The matching takes
O(N*M) time  in  the  length  of  the  input  text  and  the  RE,  if  the  RE contains  capture  groups,
otherwise it takes O(N) time in the length of the input text. It takes O(N*M) space to construct the
full parse tree, however the resulting tree is a suffix-tree of text boundaries, which usually takes
little  space.  The  caveat  is  that  the  DFA  construction  may  take  exponential  time,  however
compilation  of  the  RE into  a  DFA is  done only  once.  Improvements  to  the  DFA construction
runtime and submatch extraction space might be implemented without substantial modifications,
since the proposed algorithm is a classical DFA simulation that implicitly simulates the original
NFA.

Definitions

ε-NFA : (Q, ∑, Δ, q0, F) where  Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet,  Δ is a transition function Δ  : Q × (∑  {εε∪ {ε }) → P(Q), q0 is an initial state q0   Q, and F∈  Q, and F
is a set of final/accepting states F   Q.⊆  Q.

ε-closure : set of states reachable from q by following ε-transitions in the transition function  Δ.

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access



NFA : (Q, ∑, Δ, q0, F) where  Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet,  Δ is a transition function Δ  : Q × ∑ → P(Q), q0 is an initial state q0   ∈  Q, and F Q, and F is a set
of final/accepting states F   Q.⊆  Q.

DFA : (Q, ∑, δ, q0, F) where  Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet, δ is a transition function δ : Q × ∑ → Q, q0 is an initial state q0   Q, and F is a set of∈  Q, and F
final/accepting states F   Q.⊆  Q.

RE to ε-NFANFA

Conversion from RE to ε-NFA is done using Thomposon’s Construction[0]. All ε-transitions must
be kept, including the capture groups. The construction requires parsing the RE, generating the ε-
NFA states, and adding the edges/transitions to them. This can be done as follows: 1. linearize the
RE such as each letter in the expression  E is unique in the expression E', 2. linearize the capture
groups as well such as each group is unique, 3. transform  E’ to  E’’ in Reverse Polish Notation
(RPN) using the Shunting-yard algorithm, 4. convert E’’ to ε-NFA using Thomposon’s Construction.
This is well described by Russ Cox’s “Regular Expression Matching Can Be Simple And Fast (but
is slow in Java, Perl, PHP, Python, Ruby, ...)”[1].

ε-NFANFA to NFA

Conversion from ε-NFA to NFA is done by removing the ε-transitions. The algorithm is similar to
traversing the ε-NFA doing a Breadth-First Search, and computing the ε-closure of each state. Each
state is processed once, hence the time complexity is linear. The set of NFA (not ε-NFA) transitions
T are  stored  along  the  set  of  capture  groups  and other  important  transitions  Z (such  as  word
boundaries,  text  start,  text  end,  etc),  while  traversing  the  ε-NFA.  Algorithm  1  shows  an
implementation of  ε-transitions removal.

The algorithm defines teClosure0(q) as the set of states that are reachable from q by following ε-
transitions in the transition function teClosure,  in addition to capture groups and word-boundaries
states between q and the next reachable state. The function n0 denote the (special) start state of the
ε-NFA.

NFA to DFA

Conversion from NFA to DFA is done using Powerset Construction[2]. This takes exponential time
in  the  number  of  NFA states.  The  resulting  DFA can  be  minimized  using  Hopcroft’s  DFA
minimization[3].

The  DFA simulation  requires  checking  the  ε-closure  for  each  transition,  hence  the Powerset
Construction needs to keep track of them. Algorithm 2 shows the classical Powerset Construction.

The function delta denote the closure of q that accepts the character c.
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DFA Simulation / Submatches Extraction

The  DFA simulation  is  the  classical  simulation  as  long  as  Z is  empty.  Otherwise,  the  NFA is
implicitly simulated by following the T transitions. On each DFA transitions, the current set of NFA
transitions is pruned by the current DFA states, and the accepted NFA transitions move to the next
state.  When  the  simulation  completes,  we  are  left  with  one  or  more  accepted  states,  the  first
accepted  state  is  the  winner  path  and  the  one  we  care  about  (assuming  left-to-right  PCRE
submatching). Algorithm 5 shows an implementation of the DFA simulation and the implicit NFA
simulation.

If an NFA transition contains one or more Z transitions, they are evaluated. Transitions of capture
groups are added to the prefix-tree. Transitions of matching types like word-boundary are matched
to the current input character, the NFA state moves to the next transition if the character is accepted.

The resulting submatches are constructed by traversing the prefix-tree from the leaf / last-capture
within  the  accepted  branch,  to  the  root.  The  set  of  submatches  contains  the  full  history  of
submatches,  not  just  the  last  submatch.  Algorithm  3  shows  an  implementation  of  submatches
construction.

The subMatch function  (Algorithm 4)  is inspired by  Thompson’s NFA simulation. The asymptotic
time complexity is O(N*M) in the length of the text input and the number of NFA states. The space
complexity is O(N*M) as well, since the prefix-tree is constructed from all of the paths the NFA
took. The correctness of this algorithm lays in the fact that we construct an exhaustive prefix-tree.
Thus, the resulting tree must contain the path that matched the string.

A patological case that takes linear space is `(?:(.))*`, this will capture each character of the input
string. A patological case that takes O(N * M) space is `(?:(.))*(?:(.)(.)(.))*`, this will capture each
character 4 times as there are 4 possible branches.

Implementation

There  is  a  full  implementation  written  in  the  Nim programming  language  called  nregex[4].  It
already shows promising results, as the classical DFA is faster than PCRE in several cases, and only
a few times slower when the RE contains group captures. Nim provides powerful macros that allow
to generate optimized code at compile time, for example most dynamic data structures and lookups
are replaced by case/switch statements.
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Benchmarks

The following benchmarks show nregex[4] is up to 7 times faster than PCRE. However, when the
RE contains capture groups, PCRE is about 4 times faster than nregex.

                    relative        time/iter     iters/s      regex                                 text
CPU                                294.85ps    3.39G

PCRE                              1.10ms       912.11     ^\w*sol\w*$                     (a*100000)sol(b*100000)
nregex         739.52%      148.25us    6.75K

PCRE                              152.28ns    6.57M      ^[0-9]+-[0-9]+-[0-9]+$    650-253-0001
nregex         420.48%      36.22ns      27.61M

PCRE                              168.92ns    5.92M      ^[0-9]+..+$                       650-253-0001
nregex         397.34%      42.51ns      23.52M
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Algorithm 1:  ε-transitions removal

input:  ε-NFA result of Thompson’s construction
output: NFA, set of transitions T, and set of transitions Z

proc teClosure(result, state, z):
  copy z to z’
  if state is group or word-boundary state:
    add state to z’
  if state is character-property state:
    add state to z’
    add {εstate, z} to result
    return
  if state is char state:
    add {εstate, z} to result
    return
  for each next state of state as s:
    teClosure(result, state, z’)

proc teClosure0(state):
  initialize result array
  initialize z array
  for each next state of state as s:
    teClosure(result, state, z)
  return result

proc eRemoval(eNFA):
  initialize T transitions
  initialize Z transitions
  copy eNFA to NFA
  q0 = n0({εNFA})
  initialize Qw queue
  add q0 to Qw
  initialize Q set
  add q0 to Q
  while Qw is not empty:
    remove first element qa of Qw
    q = teClosure0(qa)
    for each state of q as (qb, z):
      add z to (qa, qb) of Z
      add qb to qa of T
      if qb is not in Q:
        add qb to Q
        add qb to Qw
    replace qa next states by q
  return NFA, T, Z
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Algorithm 2: Powerset Construction

input: NFA result of eRemoval
output: table T of DFA transitions, and (special) start state of the NFA

proc powersetConstruction(NFA):
  q0 = n0({εNFA})
  initialize Qw queue
  add {εq0} to Qw
  initialize Q set
  add {εq} to Q
  while Qw is not empty:
    remove q from Qw
    for each character of alphabet as c:
      t = delta(q, c)
      T[q, c] = t
      if t is not in Q:
        add t to Q and to Qw
  return T, q0
  

Algorithm 3: Construct Submatches

proc constructSubmatches(capture):
  initialize S array
  while capture is not root:
    if S[capture.number] is empty:
      add (-2, -2) to S[capture.number]
    if S[capture.number][last index] [0] is not -2:
      add (-2, -2) to S[capture.number]
    if S[capture.number][last index] [1] is -2:
      S[capture.number][last index] [1] = capture.bound – 1
    else:
      S[capture.number][last index] [0] =  capture.bound
    capture = capture.parent
  for each group of S as g:
    reverse g
  return S
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Algorithm 4: Submatch

input:  array  of  previous  NFA transitions,  empty  temporary  array,  transitions  T and Z result  of
eRemoval, DFA closure t, current character index, current character, and previous character
output: input submatchesA contains the current NFA transitions

proc subMatch(submatchesA, submatchesB, T, Z, t, charIndex, char, prevChar):
  for each item of submatchesA as (state, capture):
    for each next state of T[state] as stateB:
      if stateB is not in t:
        continue
      if (state, stateB) is not in Z:
        add (stateB, capture) to submatchesB
        continue
      matched = true
      captureX = capture
      for each transition of Z[state, stateB] as z:
        if z is a group:
          captureX = Capture(parent: captureX, bound: charIndex, number: z.number)
        if z is a word-boundary:
          matched = check prevChar and char form a word-boundary
        if matches is false:
          break
      if matched is true:
        add (stateB, captureX) to submatchesB
  swap  submatchesA by submatchesB
  clear submatchesB
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Algorithm 5: DFA simulation

input: text to match, DFA result of the powerset construction, T and Z transitions result of eRemoval
output: whether the regex has matched, and the set of matches

proc match(text, DFA, T, Z):
  T, q0 = DFA
  initialize submatchesA array
  add (q0, root capture) to submatchesA
  initialize submatchesB array
  charIndex = 0
  prevChar = ‘\0’
  q = {εq0}
  for each character of text as c:
    if (q, c) is not in T:
      return false, empty matches
    t = T[q, c]
    if Z is not empty:
      subMatch(submatchesA, submatchesB, T, Z, t, charIndex, c, prevChar)
    q = t
    increment charIndex
    prevChar = c
  if end state is not in q:
    return false, empty matches
  if Z is empty:
    return true, empty matches
  subMatch(submatchesA, submatchesB, T, Z, {εend state}, charIndex, ‘\0’, prevChar)
  if  submatchesA is empty:
    return false, empty matches
  state, capture = submatchesA[0]
  return true, constructSubmatches(capture)

Conclusion
Regular  expression  matching  and  submatches  extraction  can  be  achieved  using  a  DFA and
implicitly simulating the original NFA. The algorithm described in this document provides a general
solution  to  this  problem,  there  is  no  need  to  handle  special  edge  cases.  There  are  no  caveats
compared to a classical DFA when the RE does not contain capture groups or assertions such as
word-boundary. The algorithm supports any feature an NFA executed by  Thompson’s simulation
supports, such as generating a full parse tree containing the history of all the extracted submatches.
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