
A DFA for submatch extraction
Esteban Castro Borsani

January 2020

Abstract

Finite Automata is commonly used to efficiently match a Regular Expression (RE) to a given text
input. There are RE engines for submatch extraction based on Non-deterministic Finite Automata
(NFA). These algorithms usually return a single match for each submatch, instead of the history of
submatches (full parse tree). An NFA can be converted to a Deterministic Finite Automata (DFA) to
improve the runtime matching performance. This document describes an algorithm based on DFA
that extracts full parse trees from text.

Introduction

Regular Expressions (RE) are used to describe patterns to match over a given text. Most regex
engines (such as Perl’s PCRE) allow to specify capture groups for submatch extraction, word
boundaries (i.e.: `\b`), and character properties (i.e.: `\w`). There are well known algorithms that
take a RE and construct a Non-deterministic Finite Automata (NFA). An NFA can be converted to a
Deterministic Finite Automata (DFA) to improve performance. The algorithm I describe constructs
a ε-NFA, converts the ε-NFA to NFA, and then converts the NFA to DFA. The matching takes
O(N*M) time in the length of the input text and the RE, if the RE contains capture groups,
otherwise it takes O(N) time in the length of the input text. It takes O(N*M) space to construct the
full parse tree, however the resulting tree is a suffix-tree of text boundaries, which usually takes
little space. The caveat is that the DFA construction may take exponential time, however
compilation of the RE into a DFA is done only once. Improvements to the DFA construction
runtime and submatch extraction space might be implemented without substantial modifications,
since the proposed algorithm is a classical DFA simulation that implicitly simulates the original
NFA.

Definitions

ε-NFA : (Q, ∑, Δ, q0, F) where Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet, Δ is a transition function Δ : Q × (∑ {εε∪ {ε }) → P(Q), q0 is an initial state q0 Q, and F∈ Q, and F
is a set of final/accepting states F Q.⊆ Q.

ε-closure : set of states reachable from q by following ε-transitions in the transition function Δ.

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

NFA : (Q, ∑, Δ, q0, F) where Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet, Δ is a transition function Δ : Q × ∑ → P(Q), q0 is an initial state q0 ∈ Q, and F Q, and F is a set
of final/accepting states F Q.⊆ Q.

DFA : (Q, ∑, δ, q0, F) where Q is a finite set of states, ∑ is a finite set of input symbols called the
alphabet, δ is a transition function δ : Q × ∑ → Q, q0 is an initial state q0 Q, and F is a set of∈ Q, and F
final/accepting states F Q.⊆ Q.

RE to ε-NFANFA

Conversion from RE to ε-NFA is done using Thomposon’s Construction[0]. All ε-transitions must
be kept, including the capture groups. The construction requires parsing the RE, generating the ε-
NFA states, and adding the edges/transitions to them. This can be done as follows: 1. linearize the
RE such as each letter in the expression E is unique in the expression E', 2. linearize the capture
groups as well such as each group is unique, 3. transform E’ to E’’ in Reverse Polish Notation
(RPN) using the Shunting-yard algorithm, 4. convert E’’ to ε-NFA using Thomposon’s Construction.
This is well described by Russ Cox’s “Regular Expression Matching Can Be Simple And Fast (but
is slow in Java, Perl, PHP, Python, Ruby, ...)”[1].

ε-NFANFA to NFA

Conversion from ε-NFA to NFA is done by removing the ε-transitions. The algorithm is similar to
traversing the ε-NFA doing a Breadth-First Search, and computing the ε-closure of each state. Each
state is processed once, hence the time complexity is linear. The set of NFA (not ε-NFA) transitions
T are stored along the set of capture groups and other important transitions Z (such as word
boundaries, text start, text end, etc), while traversing the ε-NFA. Algorithm 1 shows an
implementation of ε-transitions removal.

The algorithm defines teClosure0(q) as the set of states that are reachable from q by following ε-
transitions in the transition function teClosure, in addition to capture groups and word-boundaries
states between q and the next reachable state. The function n0 denote the (special) start state of the
ε-NFA.

NFA to DFA

Conversion from NFA to DFA is done using Powerset Construction[2]. This takes exponential time
in the number of NFA states. The resulting DFA can be minimized using Hopcroft’s DFA
minimization[3].

The DFA simulation requires checking the ε-closure for each transition, hence the Powerset
Construction needs to keep track of them. Algorithm 2 shows the classical Powerset Construction.

The function delta denote the closure of q that accepts the character c.

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

DFA Simulation / Submatches Extraction

The DFA simulation is the classical simulation as long as Z is empty. Otherwise, the NFA is
implicitly simulated by following the T transitions. On each DFA transitions, the current set of NFA
transitions is pruned by the current DFA states, and the accepted NFA transitions move to the next
state. When the simulation completes, we are left with one or more accepted states, the first
accepted state is the winner path and the one we care about (assuming left-to-right PCRE
submatching). Algorithm 5 shows an implementation of the DFA simulation and the implicit NFA
simulation.

If an NFA transition contains one or more Z transitions, they are evaluated. Transitions of capture
groups are added to the prefix-tree. Transitions of matching types like word-boundary are matched
to the current input character, the NFA state moves to the next transition if the character is accepted.

The resulting submatches are constructed by traversing the prefix-tree from the leaf / last-capture
within the accepted branch, to the root. The set of submatches contains the full history of
submatches, not just the last submatch. Algorithm 3 shows an implementation of submatches
construction.

The subMatch function (Algorithm 4) is inspired by Thompson’s NFA simulation. The asymptotic
time complexity is O(N*M) in the length of the text input and the number of NFA states. The space
complexity is O(N*M) as well, since the prefix-tree is constructed from all of the paths the NFA
took. The correctness of this algorithm lays in the fact that we construct an exhaustive prefix-tree.
Thus, the resulting tree must contain the path that matched the string.

A patological case that takes linear space is `(?:(.))*`, this will capture each character of the input
string. A patological case that takes O(N * M) space is `(?:(.))*(?:(.)(.)(.))*`, this will capture each
character 4 times as there are 4 possible branches.

Implementation

There is a full implementation written in the Nim programming language called nregex[4]. It
already shows promising results, as the classical DFA is faster than PCRE in several cases, and only
a few times slower when the RE contains group captures. Nim provides powerful macros that allow
to generate optimized code at compile time, for example most dynamic data structures and lookups
are replaced by case/switch statements.

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

Benchmarks

The following benchmarks show nregex[4] is up to 7 times faster than PCRE. However, when the
RE contains capture groups, PCRE is about 4 times faster than nregex.

 relative time/iter iters/s regex text
CPU 294.85ps 3.39G

PCRE 1.10ms 912.11 ^\w*sol\w*$ (a*100000)sol(b*100000)
nregex 739.52% 148.25us 6.75K

PCRE 152.28ns 6.57M ^[0-9]+-[0-9]+-[0-9]+$ 650-253-0001
nregex 420.48% 36.22ns 27.61M

PCRE 168.92ns 5.92M ^[0-9]+..+$ 650-253-0001
nregex 397.34% 42.51ns 23.52M

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

Algorithm 1: ε-transitions removal

input: ε-NFA result of Thompson’s construction
output: NFA, set of transitions T, and set of transitions Z

proc teClosure(result, state, z):
 copy z to z’
 if state is group or word-boundary state:
 add state to z’
 if state is character-property state:
 add state to z’
 add {εstate, z} to result
 return
 if state is char state:
 add {εstate, z} to result
 return
 for each next state of state as s:
 teClosure(result, state, z’)

proc teClosure0(state):
 initialize result array
 initialize z array
 for each next state of state as s:
 teClosure(result, state, z)
 return result

proc eRemoval(eNFA):
 initialize T transitions
 initialize Z transitions
 copy eNFA to NFA
 q0 = n0({εNFA})
 initialize Qw queue
 add q0 to Qw
 initialize Q set
 add q0 to Q
 while Qw is not empty:
 remove first element qa of Qw
 q = teClosure0(qa)
 for each state of q as (qb, z):
 add z to (qa, qb) of Z
 add qb to qa of T
 if qb is not in Q:
 add qb to Q
 add qb to Qw
 replace qa next states by q
 return NFA, T, Z

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

Algorithm 2: Powerset Construction

input: NFA result of eRemoval
output: table T of DFA transitions, and (special) start state of the NFA

proc powersetConstruction(NFA):
 q0 = n0({εNFA})
 initialize Qw queue
 add {εq0} to Qw
 initialize Q set
 add {εq} to Q
 while Qw is not empty:
 remove q from Qw
 for each character of alphabet as c:
 t = delta(q, c)
 T[q, c] = t
 if t is not in Q:
 add t to Q and to Qw
 return T, q0

Algorithm 3: Construct Submatches

proc constructSubmatches(capture):
 initialize S array
 while capture is not root:
 if S[capture.number] is empty:
 add (-2, -2) to S[capture.number]
 if S[capture.number][last index] [0] is not -2:
 add (-2, -2) to S[capture.number]
 if S[capture.number][last index] [1] is -2:
 S[capture.number][last index] [1] = capture.bound – 1
 else:
 S[capture.number][last index] [0] = capture.bound
 capture = capture.parent
 for each group of S as g:
 reverse g
 return S

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

Algorithm 4: Submatch

input: array of previous NFA transitions, empty temporary array, transitions T and Z result of
eRemoval, DFA closure t, current character index, current character, and previous character
output: input submatchesA contains the current NFA transitions

proc subMatch(submatchesA, submatchesB, T, Z, t, charIndex, char, prevChar):
 for each item of submatchesA as (state, capture):
 for each next state of T[state] as stateB:
 if stateB is not in t:
 continue
 if (state, stateB) is not in Z:
 add (stateB, capture) to submatchesB
 continue
 matched = true
 captureX = capture
 for each transition of Z[state, stateB] as z:
 if z is a group:
 captureX = Capture(parent: captureX, bound: charIndex, number: z.number)
 if z is a word-boundary:
 matched = check prevChar and char form a word-boundary
 if matches is false:
 break
 if matched is true:
 add (stateB, captureX) to submatchesB
 swap submatchesA by submatchesB
 clear submatchesB

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

Algorithm 5: DFA simulation

input: text to match, DFA result of the powerset construction, T and Z transitions result of eRemoval
output: whether the regex has matched, and the set of matches

proc match(text, DFA, T, Z):
 T, q0 = DFA
 initialize submatchesA array
 add (q0, root capture) to submatchesA
 initialize submatchesB array
 charIndex = 0
 prevChar = ‘\0’
 q = {εq0}
 for each character of text as c:
 if (q, c) is not in T:
 return false, empty matches
 t = T[q, c]
 if Z is not empty:
 subMatch(submatchesA, submatchesB, T, Z, t, charIndex, c, prevChar)
 q = t
 increment charIndex
 prevChar = c
 if end state is not in q:
 return false, empty matches
 if Z is empty:
 return true, empty matches
 subMatch(submatchesA, submatchesB, T, Z, {εend state}, charIndex, ‘\0’, prevChar)
 if submatchesA is empty:
 return false, empty matches
 state, capture = submatchesA[0]
 return true, constructSubmatches(capture)

Conclusion
Regular expression matching and submatches extraction can be achieved using a DFA and
implicitly simulating the original NFA. The algorithm described in this document provides a general
solution to this problem, there is no need to handle special edge cases. There are no caveats
compared to a classical DFA when the RE does not contain capture groups or assertions such as
word-boundary. The algorithm supports any feature an NFA executed by Thompson’s simulation
supports, such as generating a full parse tree containing the history of all the extracted submatches.

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

References

[0]: Ken Thompson (Jun 1968). "Programming Techniques: Regular expression search algorithm".
Communications of the ACM. 11 (6): 419–422. doi:10.1145/363347.363387

[1]: Russ Cox “Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl,
PHP, Python, Ruby, …). URL: https://swtch.com/~rsc/regexp/regexp1.html

[2]: Rabin, M. O.; Scott, D. (1959). "Finite automata and their decision problems". IBM Journal of
Research and Development. 3 (2): 114–125. doi:10.1147/rd.32.0114. ISSN 0018-8646

[3]: Hopcroft, John (1971), "An n log n algorithm for minimizing states in a finite automaton",
Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), New York:
Academic Press, pp. 189–196, MR 0403320.

[4]: The nregex implementation. URL: https://github.com/nitely/nregex

https://dx.doi.org/10.6084/m9.figshare.11691723 | CC-BY 4.0 Open Access

https://swtch.com/~rsc/regexp/regexp1.html
https://github.com/nitely/nregex

	Abstract
	Introduction
	Definitions
	RE to ε-NFA
	ε-NFA to NFA
	NFA to DFA
	DFA Simulation / Submatches Extraction
	Implementation
	Benchmarks
	Conclusion
	Regular expression matching and submatches extraction can be achieved using a DFA and implicitly simulating the original NFA. The algorithm described in this document provides a general solution to this problem, there is no need to handle special edge cases. There are no caveats compared to a classical DFA when the RE does not contain capture groups or assertions such as word-boundary. The algorithm supports any feature an NFA executed by Thompson’s simulation supports, such as generating a full parse tree containing the history of all the extracted submatches.
	References

